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MUSIC, Maximum Likelihood, and Cramér-Rao
Bound: Further Results and Comparisons

PETRE STOICA anp ARYE NEHORAI. SENIOR MEMBER, IEEE

Abstract—The problem of determining the direction of arrival of
narrow-band plane waves using sensor arrays and the related one of
estimating the parameters of superimposed signals from noisy mea-
surements have received significant attention in the recent signal pro-
cessing literature. A number of results have been presented recenily in
an article by the authors of this paper on the statistical performance
of the multiple signal characterization (MUSIC) and the maximum
likelihood (ML) estimators for the above problems. This companion
paper extends the results of our previous article in several directions.
First, it establishes that in the class of weighted MUSIC estimators, the
unweighted MUSIC achieves the best performance (i.e., the minimum
variance of estimation errors), in large samples. Next, it derives the
covariance matrix of the ML estimator and presents detailed analytic
studies of the statistical efficiency of MUSIC and ML estimators. These
studies include performance comparisons of MUSIC and MLE with
each other as well as with the ultimate performance corresponding to
the Cramér-Rao bound (CRB). Finally, the paper contains some nu-
merical examples which provide a more quantitative study of perfor-
mance for the problem of finding two directions with uniform linear
Sensor arrays.

I. INTRODUCTION

OR a number of signal processing applications (for

the details of which we refer to {1]-[3] and the ref-
erences therein), the relevant problem is estimation of the
parameters in the following model:

y(t) = A(@) x(t) +e(r) 1=1,2,--+- N (l.la)

where {v(t)} € C"*" are the observed data vectors,
{x(1)} € C"*" are unknown vectors and e(r) € C"* " is
an additive noise. The matrix 4(8) € C" ™" and the vector
6 € R"*" are given by

A(6) = [a(ml) s a(w,,)] (1.1b)
9 = [ w]’ (1.1c)

with { w, } being the real-valued unknown parameters. The
form of a(w) varies from application to application. For
most of this paper, we will not specify the form of a(w)
to confer generality on our results.

In this paper we will be concerned with the problem of
estimating the parameter vector 6 in (1.1). The dimension
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n of x(1) is assumed to be known. Techniques for esti-
mating n are well documented in the literature (see, €.g.,
[4]-16]), and will not be discussed here. Concerning x (1),
estimation of these ‘‘parameters’’ is immediate once an
estimate of 0 is available (see, e.g., [1], [3], [7], [8]).
In [1] we presented a number of results on the perfor-
mance of the MUTItiple Signal Characterization (MUSIC)
and the maximum likelihood (ML) estimates of the pa-
rameters 0. We also derived the Cramér-Rao bound (CRB)
on the covariance matrix of any unbiased estimate of 0,
and provided a comparison of the MUSIC performance to
the ultimate performance corresponding to the CRB. In
the present (companion) paper, we continue our study in
[1] and establish a number of additional results on MU-
SIC, ML method, and CRB, which complete the picture
of the estimation methods in question and, in particular,
of their performances. For convenience, the presentation
of the contributions of this paper and of the way in which
they complete the results of [1], is in the next section.

‘e

II. PRELIMINARIES AND QUTLOOK

First we introduce some assumptions on the model
(1.1), that are considered to hold throughout the paper.

A. Basic Assumptions

Al: The vectors a(w) corresponding to (n + 1) dif-
ferent values of w, are linearly independent (which im-
plies m > n).

A2: The noise {e(r)} is Gaussian distributed, and

Ee(!) e*(s) = 0]51“\

Ee(t) eT(s) =0  (all tand s)

where the superscripts T and * denote, respectively, the
transpose and the conjugate transpose of the quantity in
question, and §, , is the Kronecker delta (5, , = 1 for7 =
s,and O fort # s).

A3: The covariance matrix of x(t)

P = Ex(1) x*(1) (2.1)

is positive definite. Furthermore, x(t) and e(s) are un-
correlated for all r and s, and N > m.

The assumptions above are standard in the literature on
estimation of the parameters ¢ in (1.1), For some com-
ments on these assumptions, see [1].

Next, we set some notation.
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B. Basic Notation

A the i, j element of a general matrix A €
Cvk><pq

AQOB the Hadamard product of the matrices A,
B e C**?, defined by [4 © B, =
A; By, '

A=B the difference A — B of the Hermitian
positive semidefinite matrices 4 and
B, is positive semidefinite,

d(w;) da(w)/dw|, -,

D(0) [d(w) -+ d(w)],

R = Ey(1) APA* + ol (the covariance matrix of

CYE(T) y(1)), (2.2)

NN =2 the eigenvalues of R, in decreasing or-

s =N, der,

Si, -,s, the orthonormal eigenvectors of R, as-
sociated with \,, * -+ , A, (the “‘sig-
nal eigenvectors’’),

g s the orthonormal eigenvectors of R, as-

Em-n sociated with N,.,, - . A, (the
“‘noise eigenvectors’’),

S [Sl MR P

q [gl e glll*n]s

R 1/N Y, »(t) y*(t) (the sample cov-
ariance matrix of y(7)), (2.3)

$, -+ ,8, the orthonormal eigenvectors of R, ar-

g1, , ranged in the decreasing order of the
Bn associated eigenvalues,
S, G the matrices S and G made of {§,} and,

respectively, { £, }.

We are now able to present some of the results in 1]
that are relevant to this paper. These results concern the
statistical performance ( for large N ') of the following two
estimators of 6:

e The MUSIC estimator ([5], [9], [14]), which is given
by the locations of the n smallest values of the following
function:

i

f(0) = a¥(w) GG*a(w)

a*(w)[I — $§*] a(w). (2.4)
e The deterministic (or conditional) ML estimator (in-
troduced in [15] and also studied in [3], [7], [8], [13D).

which is given by the minimizer of the following func-
tion:

F(0) = tr [I — A(4*4)™'4*|R (2.5)

where ‘‘tr’’ stands for ‘‘trace.”” Note that, for notational
convenience, we will simply write A instead of A(6), D
instead of D(6), etc., whenever there is no possibility of
confusion.

C. Review of Some Results in [1]

1) MUSIC Covariance Matrix: The MUSIC estima-
tion errors {&; — w,} are asymptotically (for large N)
jointly Gaussian distributed with zero means and the fol-
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lowing covariance matrix:
o —1 -
Cuu = 5y (HOT) Re {H © (4*UA)"}
S(HOID) (2.6)

where Re (x) denotes the real part of x,
H = D*GG*D = D*[I — A(A*4) 'A*|D (2.7)
and U is implicitly defined by

A*UA = P' + oP '(4*4) 'P7'. (2.8)

The diagonal elements of Cyy give the variances of esti-
mation errors. An equivalent but less compact expression
for these variance elements has been presented in [14] for
the special case of uncorrelated sources (i.e., diagonal P
matrices ).

2) CRB Covariance Matrix: The conditional (also
called deterministic) Cramér-Rao lower bound on the
covariance matrix of any (asymptotically) unbiased esti-
mator of 8 is, for large N, given by

-1
Cox = 5 {Re [H O PT]} (2.9)

A formula for the CRB matrix which is valid for any
value of N, was also derived in [1]. However, the com-
monly used estimators for 6, such as MUSIC and MLE,
are complicated nonlinear functions of the data vector and
their statistical behavior for **small’’ N appears difficult
to establish. In the study of the statistical efficiency of
these estimators we will thus use the (asymptotic) formula
(2.9) for the CRB.

3) Relationship Between MUSIC and MLE: The MU-
SIC estimator is a large-sample (for N >> 0) realization
of the MLE if and only if the covariance matrix P is di-
agonal.

4) Statistical Efficiency of MUSIC: For diagonal P, it
holds that

[Cwul, = [Cerl; (2.10)

where equality holds in the limit as m increases, if and
only if

a*(w)a(w) > © asm — oo.

(2.11)

For nondiagonal P, [Cyyl; is strictly greater than
[Ccrli-

Note that the condition (2.11) on a(w) is satisfied in
several important applications of the model (1.1), such as
direction finding with uniform linear arrays, and estima-
tion of the parameters of undamped exponential signals
(see [1]-[9], [15] for details).

Finally, we outline the present paper and its contribu-
tions.

D. Outline of the Paper

There are a number of directions in which the results of
[1] should be extended in order to obtain a fairly complete
image of the topic under discussion:
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1) A conceptually simple generalization of the MUSIC
estimator is obtained by considering the following func-
tion instead of (2.4):

fwlw) = a*(w) GWG*a(w) (2.12)

where W is a positive semidefinite (weighting) matrix.
Minimization of (2.12) with respect to w gives the so-
called weighted MUSIC estimators (see [2], [10]). The
statistical behavior of the weighted MUSIC estimators
needs to be established, and their performance compared
to that of the nonweighted MUSIC.

ii) The study in [1] of the statistical (in)efficiency of
MUSIC was only concerned with the diagonal elements
[Cmuliand [ Ceg]y;. It should be of interest to compare
the whole covariance matrices Cyy, and Ccg. Inter alia,
this comparison will provide more exact results on the
statistical efficiency of the MUSIC estimator.

iii) The covariance matrix of the ML estimator was not
derived in [1] (except for the special case of diagonal P
matrices, when Cy = Cyy, see 3) above). Derivation of
the covariance matrix Cy of the MLE appears to be of
significant interest. Among other things, the availability
of an expression for Cy; will make it possible to study
the statistical efficiency of the MLE, and to compare the
performances of the MUSIC and MLE in the general case
of nondiagonal P matrices.

The aim of this paper is to provide a number of results
along the lines outlined above. More exactly, in Section
III we establish the covariance matrix of the weighted
MUSIC estimator and show that in the class of estimators
which minimize (2.12), the nonweighted MUSIC pos-
sesses minimum asymptotic variance. Thus, we provide
theoretical support to the empirically observed fact that
use of a weighting matrix W # Iin (2.12) cannot improve
the accuracy of the MUSIC estimator, in large samples
(see, e.g., [2]).

In Section IV we prove that Cyyy = Ccg. Furthermore,
we show that for diagonal P and vectors a(w) satisfying
(2.11), the equality Cyyy = Ccg holds in the limit, as m
increases. For nondiagonal P we show that the inequality
is strict and that the difference Cyy — Ccg may be sub-
stantial if the elements of x () are nearly colinear. These
results again provide theoretical support to a fact observed
in simulations: the performance of MUSIC for diagonal
P is excellent, but it degrades if P approaches a (nearly)
singular matrix.

In Section V we derive the covariance matrix of the ML
estimator. Also in that section we prove that Cy; = Ccg,
and that for vectors a(w) which satisfy (2.11), the equal-
ity Cyp = Ccg holds in the limit as m increases. For vec-
tors a(w) which do not satisfy (2.11), the inequality Cy,
= Ccp is shown to be strict. These results were antici-
pated in [1] using simple examples and argumentation
based on the general properties of the ML estimators.
Here, we provide direct algebraic proofs of them.

In Section VI we compare the covariance matrices Cyy
and Cy, of the MUSIC and ML estimators. For diagonal
P we prove that Cyy = Cyy, thus rediscovering in an-
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other way the result of [1] which asserts that MUSIC and
MLE coincide asymptotically (for large N) in this case.
For nondiagonal P, we show that a generally valid order
relation between Cyy and Cy_ does not exist. Quite often,
the MLE is expected to offer better performance, but in
certain rare cases MUSIC can be superior to the MLE.

In Section VII we present the results of a numerical
study of performance, whose aim is to provide a more
quantitative comparison of Cyy, Cyy, and Cer in the case
of a two-direction finding application.

Finally, in the Appendices we include some useful re-
sults on the Hadamard matrix product, and proofs of the
theorems in the paper.

III. WEIGHTED AND NONWEIGHTED MUSIC

First, we derive the distribution of the weighted MU-
SIC estimator.

Theorem 3.1: The estimation errors {&; — w;} asso-
ciated with the weighted MUSIC estimator which mini-
mizes (2.12), are asymptotically (for large N) jointly
Gaussian distributed with zero means and the following
covariance matrix:

Comy = 53 (HO 1) Re {H O (4*UA) | o)

“(HOI)
where
H = D*GWG*D (3.2a)
H = D*GW’G*D (3.2b)
and all the other quantities have been defined before.
Proof: See Appendix B. |

Note that the expression (3.1) of Cypy holds for both
data independent and data dependent W matrices. In the
latter case W in (3.2) should be interpreted as the limit of
the data dependent weighting matrix as N — oo (see the
proof in Appendix B).

It is also interesting to note that the previous analysis
of the weighted MUSIC encompasses the direction esti-
mators which do not make use of the orthogonality of
a(w;) to all the columns of G but only to a certain vector
in the range of G. A typical example of such an estimator
is the minimum-norm algorithm introduced in {17]. This
algorithm corresponds to minimizing the function (2.12)
with W = hh*, where h is an (m — n) vector which is
such that Gh is the minimum (Euclidean) norm vector in
the column space of G, whose first component is equal to
one. (Theorem 3.1 holds for many other estimators of this
form under the weak assumption that A4 is such that none
of the elements of the vector D*Gh is equal to zero (this
ensures that (H © I)in 3.1) is a nonsingular matrix). )

Next, we show that the minimum asymptotic variance
in the class of weighted MUSIC estimators is achieved by
the nonweighted MUSIC.

Theorem 3.2: The diagonal elements of Cynyy are
greater than the corresponding diagonal elements of Cyy
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= Cwmylw-r. or
CWMU @ I = CMU @ 1. (3.3)

Proof: See Appendix C. ]
It is an open question whether the inequality (3.3) ex-
tends to the whole covariance matrices Cyyy and Cpy.
However, the answer to this question cannot change the
conclusion that use of a weighting matrix W # Iin (2.12)
will, for large N, worsen the accuracy of the estimates,
instead of improving it. It is perhaps worth stressing once
more that the above result is asymptotically valid. In the
case of small or medium-sized samples the optimal
weighting matrix might be different from W = I.

IV. MUSIC anp CRB

First, we prove that the covariance matrix Cyy is
bounded from below by the CRB covariance matric Ccg.
We present a simple proof of this expected result, which
has the virtue of revealing some ways of doing more ac-
curate comparisons between Cyy and Ccg.

Theorem 4.1: The covariance matrix of the MUSIC es-
timator can be decomposed additively as follows:

Cwu = Cuu + Cwu
where (see (2.6), (2.8))

(4.1)

Cuy = %v (HOI) 'Re[HOPT(HO )
(4.2)
EMU :;TV(HQ ’)71
‘Re {HO [P7(ar) P YO
(4.3)
The matrices Cyyy and Cyy satisfy
Cwu = Cer (4.4)
Cwy = 0. (4.5)
Proof: The results follow immediately from Lem-
mas A.]1 and A.2 in Appendix A. ]

Next, let us assume that P is diagonal. Then, we get

~ o -1 _
Cu =55 (HOT) Pl = Cen. (4.6)

If we additionally assume that a (w) satisfies (2.11), then
it is not difficult to see that Cy tends to Cyy, as m in-
creases. Indeed, under assumption (2.11), the matrix
(A*A)™" tends to zero as m — oo, which implies that Cyy
tends to zero faster than Cyy (compare the expressions of
the two matrices); thus the contribution of Cyy in the de-
composition (4.1) vanishes as m increases. As an exam-
ple, consider the case of the steering vector

i(m— l)w]T

a(w)=[1 & - e (4.7)
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which appears in direction estimation applications using
narrow-band uniform linear arrays. For (4.7), we have
a*(w) a(w) = m and, therefore, the condition (2.11) is
satisfied. Some straightforward calculations show that the
limits, for m — oo, of the matrices H and (A*A4) corre-
sponding to (4.7), are given by (see [1])

1
— (A*4) »> | (4.8a)
m
1 1
— H - — I 4.8b
m 12 ( )
Thus, as m increases
6o
— 10 P! 4.9
Cuw = 51O (4.9)
and
G = o po (4.10)
MU Nm4 . .

In conclusion, under the assumptions above (P is di-
agonal and a (w) satisfies (2.11)) Cyy approaches Cey as
m increases, which means that the MUSIC estimator is
asymptotically (for large N and m) efficient in this case.
This result was also obtained in [1] by different reasoning.

If either the matrix P is nondiagonal or the vector a(w)
does not satisfy (2.11), then Cyy cannot attain Ccg, and
the MUSIC estimator is statistically inefficient. This is so
since the equality in (4.4) cannot hold if P is not diagonal,
and Cyy will be strictly bounded from zero if a(w) does
not satisfy (2.11).

For nondiagonal P, it is worth noting that the difference
Cyu — Ccg may be quite large if P is nearly singular. We
illustrate this fact by considering once more the case of
the steering vector a(w) given by (4.7). The correspond-
ing matrices Cyy and Ccy behave, for large m, as follows
(see (4.8)-(4.10)):

60 .
Cuu = 5 (10 P7) (4.11)
Cen » L (10 P)”! (4.12)
CR Nm} " :

Thus, the difference matrix Cyyy — Ccg may indeed take
very large values if P is nearly singular. As a simple ex-

ample, for
1
P = l: p} |p| <1
p 1

we obtain from (4.11) and (4.12)

60 p°
Nm®1 — p?

Cvy — Cer

which increases without bound as | p | approaches one.
In the above analysis it was assumed that the signal-to-

noise ratio (SNR) is finite (the SNR for the ith source/

signal is defined as P;; /). If the SNR’s of all signals are
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very large then Cyy is much less than Cyy and can be
neglected in (4.1). If in addition P is diagonal then it fol-
lows from (4.6) that as SNR — o, Cyy = Cyy = Cer-
This observation confirms a result established in [14] by
a different method.

V. MLE anp CRB

First, we derive the asymptotic (for large N) distribu-
tion of the ML estimator. Derivation of the MLE distri-
bution from (2.5), by the usual technique of expanding
the corresponding gradient equation F'(#) = 0 in a Taylor
series around the true parameter values, appears some-
what difficult. To obtain a simpler derivation we make use
of a result proven in [1] which states that a large-sample
(for N >> 0) realization of the MLE is given by the min-
imizer of the following function:

h(8) = tr [A*GG*AP). (5.1)

Observe that £ (6) depends on 6 in a simpler way than
F(0) does.

Theorem 5.1: The estimation errors {&; — w;} of the
ML estimator are asymptotically (for large N) jointly
Gaussian distributed, with zero means and a covariance
matrix given by

CL = %} [Re (HO PT)]

- {Re [H © (PA*UAP) ]} [Re (H © PT)]""
(5.2)

(all the quantities appearing in (5.2) have been defined
previously).
Proof: See Appendix D. n
Next, we show a simple relationship between the co-
variance matrix of the MLE and the CRB.
Theorem 5.2: The covariance matrix Cy can be de-
composed additively as follows:

CuL = Cer + Cur (5.3)

+ {Re [H O (4*4) "]} [Re (H © PT)]
(5.4)

Proof: Inserting the expression (2.8) of A*UA into
(5.2), we readily get the additive decomposition (5.3),
(5.4). ]

The simple result of Theorem 5.2 has several immedi-
ate implications:

a) Since the matrix Cyy is positive semidefinite (cf.
Lemma A.1), it follows that Cyyp = Ccg (as expected).

b) For vectors a(w) which do not satisfy (2.11) and
for finite SNR, Cy is strictly bounded from zero and,
therefore, the MLE cannot achieve the CRB.
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¢) For vectors a(w) which satisfy (2.11), Cy goes to
zero faster than Ceg when m increases (compare the
expressions of these two matrices). Thus, in this case the
MLE is asymptotically (for large N and m) statistically
efficient. Note, however, that for ‘‘small or medium”’
values of m (and finite SNR), Cy,_ is different from zero
and, thus, the MLE is statistically inefficient. Also note
that Ccg is inversely proportional to SNR, while Cy is
inversely proportional to (SNR)>. Thus, for a given finite
m, the Cy approaches the Ccy as the signal-to-noise ratio
(SNR) increases. These properties of the MLE are similar
to the analogous properties of the MUSIC but here they
hold for arbitrary P matrices.

The results a)-c) above reinforce some conclusions of
the analysis of the MLE, obtained in [1] by less direct
argumentation. The statistical inefficiency of the MLE in
the case of finite m (and finite SNR), appears to be a rather
unusual result which leaves open the question whether es-
timators better than MLE could exist (see [16] for a study
of this problem). In this light, comparison between the
MLE and the (much) simpler computationally MUSIC es-
timator becomes of significant interest. This aspect is ad-
dressed in the next section.

VI. MUSIC anp MLE
For diagonal P matrices we simply have
2
2N
S(HOD ' = Cw.

Cuv = — (H® 1)"' Re [H © (4*UA)"]

(6.1)

The equality above between Cy; and Cyy was expected
in view of the fact that, for diagonal P, the MLE and
MUSIC are known to coincide as N increases [1] (we
stress that the equality (6.1) holds for all m > n).

Next, consider the more general case of nondiagonal P
matrices. If either the SNR is ‘‘large enough’’ or the vec-
tor a(w) satisfies (2.11) and m is ‘‘sufficiently large,”’
then we have (according to the analysis in Sections IV and
V): Gy = Cer < Cyy- However, in all other cases Cyy,
> Ccgr, which means that the inequality Cy; = Cyy is
not a priori excluded. In fact, this inequality can really
hold true, as we show in the following.

From (4.1) and (5.3), we get

2N

g

2N .
(Cwy — CwL) = o (Cwu — Ccr)
2N — —
+ 7 (CMU - CML)- (6-2)

The first term on the right-hand side of (6.2) is positive
semidefinite and independent of ¢, while the second term
is proportional to 0. We thus conclude that a sufficient and
necessary condition for the inequality Cyyy = Cyy to hold,
is

Cywu = Cur. (6.3)
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Fig. 1. Comparison of the normalized estimation error standard deviations of MUSIC, MLE, and CRB for the shown values of
p. m, and SNR, and for varying Aw. (a) 0 = 0.01 (SNR = 20 dB). (Continued on next page.)

The sufficiency of (6.3) is evident. The necessity follows
from the observation that the second term in (6.2) is pro-
portional to ¢, while the first does not depend on o. Thus,
if (6.3) does not hold then one can choose ¢ sufficiently
large such that Cyy = Cy does not hold either. In the
following we provide a simple counterexample to (6.3).

Let P = (A*4)~'/? (the (Hermitian) positive definite
square root of the inverse matrix (A*4)™").! Then, we

'Let H be a (Hermitian) positive definite matrix. Then we can write H
= Q*AQ, where Q is unitary and A is a positive definite real-valued di-
agonal matrix. Define P = Q*A'/2Q and observe that P* = H. Thus, P is
a (Hermitian) positive definite square root of H.
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p =0.99

which satisfy the following inequality (cf. Lemma A.2 in

Appendix A)

Cu = Cyu-

Thus, for the above choice of the matrix P (which is spe-
cial but is not peculiar), the MUSIC estimator will be more
accurate than the MLE for “‘sufficiently large’’ values of
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Fig. 2. The ratios (7.1) for p = 0.9. ¢ = 0.1 (SNR = 10 dB). m = 5, 20. and 50. and varying Aw. (a) Standard deviation
(CRB)/standard deviation (MUSIC). (b) Standard deviation (CRB)/standard deviation (ML).

o! The above result makes a detailed study of the perfor-
mances of MUSIC and MLE of considerable interest. In
the next section we present a numerical study of perfor-
mance for the case of a two-direction-finding application.

VII. MUSIC, MLE, anp CRB: A NUMERICAL
COMPARISON

Consider the situation of two narrow-band plane waves
impinging on a uniform linear array of m sensors. Then n
= 2 and a(w) is given by (4.7) (see [2], [6], [10]). Let

p:[; ’j o] < 1.

The square roots of the variance elements [Cyyl) =
[Cmulaz, [CuLlii = [Cuilee and [Cr]iy = [Cerl
times N have been evaluated for several values of p, m,
and o, and for varying (w;, w,). Note that in the present
case these variance elements depend on Aw = |w, — w |
only. Thus they have been evaluated for Aw € (0, 7).
However, only the variance values for Aw € (0, 0.2) [rad]
will be shown since the case of practical interest is of
closely spaced sources.

Fig. 1 shows the results obtained as outlined above.
These results confirm that for highly correlated sources
the performance of MUSIC degrades significantly com-
pared to MLE and CRB; whereas for weakly correlated
sources MUSIC and MLE provide similar performance
that is close to the CRB for reasonably high SNR. Fig. |
also shows the extent to which a degradation of estimation
accuracy caused by a decrease in SNR or Aw may be com-
pensated for by an increase in m. This aspect is further
studied in Fig. 2 where the ratios

st. dev. (CRB)/st. dev. (MUSIC)
and st. dev. (CRB)/st. dev. (ML) (7.1)

are plotted versus Aw, forp = 0.9, ¢ = 0.1 (SNR = 10
dB), and several values of m. It is seen from this figure
that ML achieves CRB as m increases (the smaller Aw (or
SNR), the larger m required for MLE to achieve CRB).

However, MUSIC variance for correlated sources (p #
0) cannot achieve CRB by increasing m and, in fact, MU-
SIC statistical efficiency does not necessarily increase
when m increases.

VIII. CoNCLUSIONS

The present paper and its companion [1] provide a fairly
complete image of the performance and statistical effi-
ciency of the MUSIC and conditional ML estimators. The
main contributions of this paper were outlined in Section
IT and will not be repeated here. In this concluding section
we only reemphasize the importance of the explicit
expressions for the covariance matrices of the ML and
MUSIC estimators and of the conditional CRB, derived
in this paper and in [1]. Using these expressions we were
able to perform general analytic comparisons between the
methods under discussion, as well as rapid numerical
evaluations of performance in specific situations. A main
result which emerged from the present study concerns the
fact that for small or medium values of m and SNR (which
is the case of practical interest), the (conditional) MLE is
not the most accurate estimator. This fact opens the pos-
sibility that other estimators which are computationally
simpler and statistically more accurate than the MLE
could exist. (Computationally, MUSIC is such a simpler
estimator but is seldomly more accurate than MLE). The
search for such estimators remains a research topic of
considerable practical and theoretical interest (see [16]).

APPENDIX A
SoME UseruL REesuLTs oN THE HADAMARD ProbpuUCT

Lemma A.1: Let A, Be C"”*" be two (Hermitian) pos-
itive semidefinite matrices. Then the matrix A © B is pos-
itive semidefinite too.

Proof: This result (for the real-valued case) is attrib-
uted to Schur (see [11]). For completeness, we provide a
simple proof of it.

Since the matrix B is positive semidefinite, it can be
written as B = W*W. Let w, denote the kth column of W.
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Then
(40 B)',j = A;wi'w,

and, therefore, we can write

wi 0 Apl < Al
AOB-= : :
0 Wy Anll o Amrl
w) 0
0 w,
= WHA Q)W

where ® denotes the Kronecker product (see, e.g., [11],
[12]), and

w 0

>

w
0 w”

Since the matrix A ® [ is positive semidefinite (by the
properties of the Kronecker product, e.g., [11]), the proof
is finished. ]

Lemma A.2: Let A, B, and C be (Hermitian) positive
semidefinite matrices ( B can be Hermitian only). Then,
assuming that the inverses appearing below exist, it holds
that

[Re (4 © B)] '[Re (4 © C)][Re (4 © B)]
> {Re [A@(BC*‘B)]}*. (A.1)
Proof: The inequality (A.1) is equivalent to
Re [4 © (BC™'B)] — [Re (4 @ B)][Re (4 © )]
“[Re(4©B)] =0
which, in turn, is equivalent to
AOBC'B AOB
¢ [A ®© B AO C]

-wef[3 Aol e

Since the matrices

-l
o= A

N

and

{BC'B B

[ BC™!
=, C[C 'B I]

are both positive semidefinite, the assertion of the lemma

follows from Lemma A.1 and the fact that Re (H) = 0

if H= 0. |

Corollary: Let P be a (Hermitian) positive definite ma-
trix. Then

(OoP Y= UoP)"
Proof: Set A = B = I and C = P™' in Lemma
A2. ]

APPENDIX B
ProOOF OF THEOREM 3.1

To prove the theorem, we will use the following result
proved in [1] (also, see [2]).

Lemma B.1: The orthogonal projections of { g;} onto
the column space of § are asymptotically (for large N)
jointly Gaussian distributed with zero means and the fol-
lowing variances—covariances:

o

E(S5%4)(55%8)" = 5

E(85%8)(85*8,) =0

where the matrix U is defined (implicitly) by (2.8). W

Now we turn to the proof of Theorem 3.1, which will
closely follow the proof for the nonweighted case in [1].
As &; is a minimum point of f(w), we must have

fi(&;) = 2 Re [a*(&;) GWG*d(&,)] = 0.

Since &, is a consistent estimate of w; ([1], [2]) we can
write (for large N)

0 = fi(&) = fulw) + firlw) (@ — )

2 Re [a*(w;) GWG*d(w;)]

+ 2 Re [d*(w;) GWG*d(w;)

+ a*(w;) GWG*d'(w;) (& — w;)

2 Re [a*(w;) GWG*d(w;)]

+ 2[d*(w;) GWG*d(w)]|(& — w;). (B.1)

Remark: The replacement of G* by G* in the above
calculation is a subtle issue discussed in some detail in
[1]. The complication is caused by the fact that G is unique
(with probability one) whereas G is not (any multiplica-
tion of G on the right by a unitary matrix produces another
set of noise eigenvectors, i.e., another G matrix). Thus,
the problem is which G should be used instead of G. Con-
sider the orthogonal projection of G on the subspace
spanned by the columns of G: G(G*G ). The distribution
of G*G can be shown to be independent of the distribu-
tion of the other terms in (B.1) (see [1]). Thus, the matrix
G*G can be treated as given, and since it is asymptoti-
cally unitary (as can be readily verified, see [1]) it follows
that asymptotically G(G*G ) forms a matrix of noise ei-
genvectors. This matrix can thus be redenoted by G and
used in (B.1) instead of G. Note that the difference G -
GG*G = (I — GG*)YG = $5*G tends to zero as N —
oo, |

U(S,‘_j

for all i, j

I

I
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Next note that
a*(w;) GWG*d(w;)

a*(w;) SS*GWG*d(w;)

2 [gfd(w)][a*(w)SS*g]

k=1

i

(B.2)

where [, * * * §,_.] = GW. Thus, from (B.1) and (B.2)
we obtain (neglecting the higher order terms)

m-—n

(& — w) = —Re zkgl [gfd(wi)][a*(wi)ss*gk]}/

(HOT) (B.3)

i
The asymptotic zero-mean joint Gaussian distribution of
{& — w;} follows from (B.3) and Lemma B.1. To eval-
uate the covariance matrix of the distribution, we make
use of the following simple result: for two scalar variables
u and v, it holds that

Re (u)  Re (v) = }[Re (uv) + Re (uv*)].

Let

m-—n

2 [gtd(w)][a%(w)ss*4]

u =

and let v be defined similarly to u but with w; replaced by
w;. Using Lemma B.1, we obtain

m—nm-—n

Fuv = k§| ,Ell [é}fd(‘v"i)“g:d(wi)]
E{la¥(@)35%] - [ax(@)357,] ) = 0
and
Euv* = ”’2‘:” ”’Z’:" [d*(w))g,8id(w)]

k=1 p=1

- [a*(w) E(SS*8:)(85%8,)" a(w;)]

k; d*(w;) 887 d(w;) a*(w;) Ua(w;)

Zla

[d*(w) GWG*d(w;)][a*(w;) Ua(w;)].

Zls

Thus, we have

[CWMU],'J'
= 5 Re [H;(4*U4) ]/[H O 1) (H O 1) ]

and the proof is complete.
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AprpenDIX C
PrROOF OF THEOREM 3.2

Since
Como © 1 — Cyy © 1
_
2N
~(HO 'O (U}

the inequality (3.3) will follow from Lemma A.1 if we
can prove that

GTOH) 'UOMUOH) " "=2U0H)
or, equivalently,
(IOHEHYIOH) 'I®H)< (IO H)

(Ao @Oonm@EO ™

or yet
{IQH 1@1‘1}
IOH IOH

[ ]els A
([ nfe[oa]

- |G*D WG*D]} = 0. (C.1)
However, using Lemma A.l once more we conclude
readily that (C.1) holds, and the proof is finished.

APPENDIX D
ProoF oF THEOREM 5.1

It follows from (5.1) and the consistency of the MLE
[1] that, for large N, we can write (neglecting higher order
terms)

0 =nh'(8)=nh'(0) + h"(8)(f - 9).

Let p;; denote the i, j element and P; the i column of the

matrix P. Some straightforward calculations then give
oh(9 A* 4 aa, 04
L tr [T GG*AP} + tr liPA*GG* E“jl

dw; w; w;

(D.1)

Il

= 2 Re {d*(w,) GG*AP,} (D.2)

and
3*h(0
Ow,; 0w

! J

~—

=2 Re {d*(wi) GG*d(wj)pjl}

d*(w;)
+2Re {a—(“") GG*AP,}. (D.3)
dw;

The sample projector matrix GG* which appears in the
expression above of the Hessian matrix 2”(8), can be re-
placed by the true projector matrix GG *, without affect-
ing the dominant term in (D.1). This observation implies
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that the second term in (D.3) can be neglected, since G*4
= 0 (as can readily be verified, see (2.2)). Similarly, we
can replace the first G in (D.2) by G (see the remark after
equation (B.1)). This replacememAwill onlAy introduce a
higher order term in (D.1), since G*4 = G*SS*A tends
to zero as N — oo,

Using the observations above, we get from (D.1)-(D.3)

h—6=—[Re(HOP)] 'Re(n) (D4)
where the ith component of the vector p is given by

w = [(AP)*GG*d(w,)] (D.5)

(here (AP); denotes the ith column of the matrix AP).

Next, observe that p, is similar to the quantity (B.2)
(with W = I') in Appendix B. This similarity and the cal-
culations in Appendix B can be exploited to conclude
readily that Re () is asymptotically (for large N ) Gauss-
ian distributed with zero mean and the following covari-
ance matrix:

E[Re(n) * Re(u*)] = %v Re{H © (PA*UAP)"}.

(D.6)

The assertion of the theorem now follows from (D.4) and
(D.6).

REFERENCES

1] P. Stoica and A. Nehorai. **MUSIC. maximum likelihood. and Cra-
mér-Rao bound.”" IEEE Trans. Acoust., Speech, Signal Processing.
vol. 37, pp. 720-741, May 1989.

2] K. Sharman and T. S. Durrani, **A comparative study of modern ei-

genstructure methods for bearing estimation—A new high perfor-

mance approach,”" in Proc. 25th IEEE Conf. Dec. Contr. (Athens.

Greece). Dec. 1986, pp. 1737-1742.

Y. Bresler and A. Macovski. **Exact maximum likelihood parameter

estimation of superimposed exponential signals in noise.”” [EEE

Trans. Acoust., Speech, Signal Processing, vol. ASSP-34, pp. 1081

1089. Oct. 1986.

[4] M. Wax and T. Kailath, **Detection of signals by information theo-
retic criteria,”” IEEE Trans. Acoust., Speech, Signal Processing. vol.
ASSP-33. pp. 387-392, Apr. 1985.

|51 G. Bienvenu and L. Kopp. “*Optimality of high resolution array pro-
cessing using the eigensystem approach.”” [EEE Trans. Acoust.,
Speech. Signal Processing. vol. ASSP-31. pp. 1235-1248. Oct. 1983.

6] H. Wang and M. Kaveh, **On the performance of signal-subspace
processing, Part 1: Narrow-band systems.” IEEE Trans Acoust.,
Speech, Signal Processing, vol. ASSP-34, pp. 1201-1209. Oct. 1986.

|7) R. Kumaresan and A. K. Shaw. **High resolution bearing estimation

without eigen decomposition,”” in Proc. IEEE Int. Conf. Acoust.,

Speech, Signal Processing (Tampa. FL), Mar. 1985, pp. 576-579.

R. Kumaresan. L. L. Scharf, and A. K. Shaw, "*An algorithm for

pole-zero modeling and spectral analysis.”” [EEE Trans. Acoust..

Speech, Signal Processing. vol. ASSP-34, pp. 637-640. June 1986.

R. O. Schmidt. **Multiple emitter location and signal parameter es-

timation.”” in Proc. RADC Spectral Estimation Workshop (Rome.

NY). 1979, pp. 243-258.

[10] D. Johnson. **The application of spectral estimation methods to bear-
ing estimation problems.”” Proc. IEEE. vol. 70, pp. 1018-1028. Sept.
1982.

{11] R. Bellman, Introduction to Matrix Analvsis, 2nd cd.
McGraw-Hill, 1972.

13

8

19

New York:

IEEE TRANSACTIONS ON ACOUSTICS. SPEECH. AND SIGNAL PROCESSING. VOL. 38. NO. 12. DECEMBER 1990

[12] T. Soderstrom and P. Stoica. Svstem Identification. London, U.K.:
Prenticc-Hall. 1989.

[13] D. Starer and A. Nehorai. “*Maximum likelihood estimation of ex-
ponential signals in noise using a Newton algorithm,™ in Proc. 4th
ASSP Workshop Spectrum Estimation. Modeling. (Minncapolis. MN).
Aug. 1988, pp. 240-245.

[14] B. Porat and B. Fricdlander. " Analysis of the asymptotic relative
efficiency of the MUSIC algorithm.”" IEEE Trans. Acoust., Speech,
Signal Processing. vol. ASSP-36. Apr. 1988, pp. 532-544.

[15] M. Wax. “*Detection and estimation of superimposed signals.” Ph.D.
dissertation. Stanford University. Stantord, CA. 1985.

{16] P. Stoica and A. Nehorai, " Performance study of conditional and
unconditional direction-of-arrival estimation,”” JEEE Trans. Acoust..
Speech. Signal Processing. vol. 38. no. 10. pp. 1783-1795, Oct.
1990.

[17] R. Kumarcsan and D. W. Tufts. *Estimating the angles of arrival of
multiple planc waves.”” JEEE Trans. Aerosp. Electron. Syst.. vol.
AES-19. pp. 134-139. Jan. 1983.

Petre Stoica received the M.Sc. and Ph.D. de-
grecs, both in automatic control. in 1972 and
1979, respectively.

Since 1972 he has been with the Department of
Automatic Control. the Polytechnic Institute of
Bucharest, Romania. His rescarch interests in-
clude various aspects of system identification. time
series analysis. and signal processing. For papers
on these topics he received three national prizes.
He is coauthor of five books, the most recent being
Svstem Identification  (Englewood Cliffs, NI
Prentice-Hall. 1989).

Dr. Stoica is a member of the Board of Directors of the Time Series
Analysis and Forecasting (TSA&F) Society. and an Associate Editor for
the Journal of Forecasting. He was given the Member of TSA&F
(MTSA&F) honors award. He was corecipient with A. Nehorai of the IEEE
Signal Processing Society’s Senior Award for the paper, *Music, Maxi-
mum Likelihood. and the Cramér-Rao Bound.* published in 1989.

Arye Nehorai (S'80-M'83-SM'90) received the
B.Sc. and M.Sc. degrees in electrical engineering
from the Technion—Israel Institute of Technol-
ogy. in 1976 and 1979. respectively, and the
Ph.D. degree in electrical engincering from Stan-
ford University, Stanford. CA. in 1983.

From 1983 to 1984, he was a Research Asso-
ciate at Stanford University. From 1984 to 1985,
he was a Research Engineer at Systems Control
Technology Inc.. in Palo Alto. CA. Since 1985
he has been with the Department of Electrical En-
gineering and the Applied Mathematics Program at Yale University, New
Haven. CT. where he is an Associate Professor. During parts of 1989 and
1990 he held Visiting Professorships at Uppsala University, Sweden. and
the Technion, Israel. His current areas of interest are adaptive filtering,
sensor array processing, system identification. and biomedical engineer-
ing.

Dr. Nehorai is an Associate Editor of Circuits, Systems and Signal Pro-
cessing and was an Associate Editor of the IEEE TRANSACTIONS ON Acous-
TICS. SPEECH. AND SIGNAL PROCESSING. He is a member of the Technical
Committee on Spectrum Estimation and Modeling and the Education Com-
mittee in the IEEE Signal Processing Society, and is the Chairman of the
Connecticut IEEE Signal Processing Chapter. He was corecipient with P.
Stoica of the IEEE Signal Processing Society's Senior Award for the paper
**MUSIC. Maximum Likelihood. and Cramér-Rao Bound."" published in
1989. He is a member of Sigma Xi.




