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ABSTRACT

Starting with a randomly distributed sensor array with unknown
sensor orientations, array calibration is needed before target local-
ization and tracking can be performed using classical triangulation
methods. In this paper, we assume that the sensors are only ca-
pable of accurate direction of arrival (DOA) estimation. The cali-
bration problem cannot be completely solved given the DOA esti-
mates alone, since the problem is not only rotationally symmetric
but also includes a range ambiguity. Our approach to calibration
is based on tracking a single target moving at a constant veloc-
ity. In this case, the sensor array can be calibrated from target
tracks generated by an extended Kalman filter (EKF) at each sen-
sor. A simple algorithm based on geometrical matching of similar
triangles will align the seperate tracks and determine the sensor
positions and orientations relative to a reference sensor. Computer
simulations show that the algorithm performs well even with noisy
DOA estimates at the sensors.

1. INTRODUCTION

The problem of localization and tracking by passive sensor arrays
arises in numerous practical applications [1]-[4], [6]-[9]. Like-
wise, two-dimensional bearings-only target motion analysis (TMA)
has been studied extensively [1]-[6]. One of the most familiar sit-
uations is tracking by a single moving observer, which monitors
the bearing angle of an acoustic source (target) that is assumed to
be moving with constant velocity. Figure 1 depicts the geometri-
cal configuration of the problem in 2D, where the sensor motion
is unconstrained in the x-y plane. Even though the configuration
appears to be intuitively simple, the tracking problem is not easy
to solve, because the problem is intrinsically nonlinear.

Sensor array calibration is a generalization of this problem in
which the sensor positions as well as the target track have to be
determined. In this broader problem, the target is not constrained
to move on a straight line and can assume a complex motion.
This estimation problem is again nonlinear and unfortunately not
amenable to linear analysis techniques. Moreover, if the sensors
have random orientation references, calibration requires not only
localizing the sensors but also identifying their orientation angles.
Estimation is performed using only the noisy DOA (direction of
arrival) estimates and hence the tracking part of the problem in-
herently includes range and rotational ambiguities. The range am-
biguity problem is illustrated in Fig. 2, where it is shown that two
different targets may have the same DOAs at all times. Rotational
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Figure 1: Geometrical configuration of the two dimensional track-
ing problem, where sensor and target are assumed to lie in the same
plane. The target track is assumed to be parallel to the x-direction,
and the sensor reference orientation is arbitrarily chosen to be the
y-direction. Note that the sensor is situated at the origin.

ambiguity is more evident since adding or subtracting the same
constant to all of the reference angles would not have any effect.
These ambiguities necessitate a criterion for the observability of
the target, which was studied by Nardone and Aidala [5].

In this paper, an extended Kalman filter is used to calibrate
the sensor array for a target moving with a constant velocity. The
pertinent filter equations of state and measurement are shown. The
extended Kalman filter equations are formulated in the so-called
modified polar coordinates (MPC for 2D, modified spherical coordinates-
MSC for 3D) [1]- [4],[12]- [13], which decouples the observable
and unobservable variables in the state vector [2]. This decoupling
prevents the possibility of an ill-conditioned covariance matrix and
hence provides stability to the filter. The MPC (or MSC) ex-
tended Kalman filter is favored over a Cartesian coordinate formu-
lation and some other pseudo-linear solutions since its estimates
are asymptotically unbiased [10, 11]. Moreover, as will be shown
later, the extended Kalman filter can determine the sensor positions
and orientations accurately for a target moving with constant ve-
locity, by exploiting the inherent range and rotational ambiguities.
The constant velocity assumption simplifies the problem consider-
ably, and might be feasible in the calibration stage if it were pos-
sible to drive a known calibration target through the sensor field to
generate data for the EKF calibration algorithm.

The extended Kalman MPC state vector consists of four vari-
ables: bearing rate, range rate divided by the range, bearing, and
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Figure 2: Two different targets may have the same DOA at all
times. It is impossible to distinguish target #1 from target #2 given
the DOA measurements alone.

reciprocal of the range as compared to its Cartesian counterpart,
whose state vector has velocity and range as state variables [2].
With the MPC state variables, it will be demonstrated with com-
puter simulations that the extended Kalman filter scales the target
track when the initial range information is not available. Basic ro-
tations to align the target tracks from multiple sensors will result in
sensor orientations whereas simple geometrical triangle similarity
arguments will culminate in the scaled relative sensor positions1.

In Section 2, the filter properties are given and our approach
to the solution is revealed. Section 3 accounts for the details of
the sensor calibration scheme and offers an alternative method for
calibration. Section 3 also provides simulations demonstrating the
efficacy of our approach. Section 4 extends the solution to 3D
using the modified spherical coordinates. Conclusions are given in
the last section.

2. THE EKF FILTER PROPERTIES

The MP state vector is given by
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depict the relative target range and bearing angle, respectively.
η(t) denotes the additive Gaussian noise to the bearing measure-
ments. Development of the EKF filter equations can be found at
[1]-[2],[4] and hence are not reproduced here.

The extended Kalman filter requires four inputs in order to
produce its desired output, which is the tracked position of the

1It should be noted that the range ambiguity can not be circumvented
given DOA measurements alone. It will be required to have one true range
to reach the absolute localization of the sensor array.

target. These inputs are the noisy bearings angle measurement
vector, the initial state vector, the initial error covariance matrix,
and a relative acceleration vector. The relative acceleration vector
is set to zero since the target is assumed to be moving with constant
velocity. The angle measurement vector is generated by Eq. (2)
and when the sensor is stationary it can be written as (refer to the
configuration in Fig. 1)

tan(β(t)) =
vt

ry

t = αt (3)

The initial state vector and covariance matrix, on the other hand,
are initialized as follows

y(0|0) = [(β(2) − β(1))/T 0 β(2) 1/Ro]
T (4)
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where T is the sampling period, Ro is our initial distance estimate
to the target, σ2

e(n) is the time varying variance of the additive
Gaussian angle measurement noise, and γ is a free parameter of
our choice.

An important feature of the extended Kalman filter is that if
our initial target range estimate, Ro, is not specified correctly, the
filter generates a scaled target track (Fig. 3). It is easy to prove
this property by looking at Eq. (3). If ry is not specified correctly,
since α only depends on the DOA estimates, vk will be scaled
accordingly. As mentioned above, it is not possible to overcome
the range ambiguity without having an absolute distance measure.
However, this property of the extended Kalman filter enables us to
use any value of Ro without losing the track information.
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Figure 3: If Ro was larger than Rtrue, the estimated target track
would form a bigger triangle that is again similar to the triangle
formed by the true track. Note that the sensor is situated at the
origin and γ = 1.

In the simulation of Fig. 3, a sampling period of T = 0.002s
was used for illustrative purposes. In a more realistic situation
that imposes low power constraints on the sensors, high sampling
rates are not desirable. The extended Kalman filter has also been
tested for low sampling rates. Figure 4 shows that it still performs
reasonably well in tracking the target even though that sampling
period was T = 1s and the DOA measurements were disturbed by
additive Gaussian noise with standard deviation σ2

angle = 1◦.
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Figure 4: Target is moving with vx =10m/s and vy =10m/s.
N = 40 samples are taken during 40s, corresponding to a sam-
pling period T=1s. γ = 10−1 gave the best track for this case.

3. SENSOR ARRAY CALIBRATION USING EXTENDED
KALMAN FILTER

In this section, the sensor array will be calibrated using the tracks
generated by the extended Kalman filter along with a simple geo-
metrical procedure. Figure 5 illustrates the approach used in deter-
mining the sensor positions where A0B0 and A1B1 are the track
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Figure 5: Triangle ∆O0A1B1 is similar to ∆O1A0B0 by the scal-
ing property of the extended Kalman filter. Since the reference
track A0B0 and the track A1B1 estimated by sensor 1 are known,
(xs1, ys1) can be determined geometrically. Once the sensor po-
sition is determined, sensor orientation is found by simply finding
the rotation angle that aligns the estimated track and the reference
track in the configuration shown.

estimates of the reference sensor and sensor 1, respectively. Since
the track R1 and ∆β1 are known, the angles φ1 and α1 can be
determined. Then, on the reference track R0, we can find triangu-
late the sensor position (xs1, ys1) by intersecting two lines from
A0 (A0A1) and B0 (B0B1) using the angles φ1 and α1, respec-
tively. In order to find the reference angle for sensor 1, ∆O0A1B1

is shifted without any rotation on (xs1, ys1) so that O0 coincides
with the point at (xs1, ys1). Then, the rotation angle that will align
the triangle ∆O0A1B1 and the triangle ∆O1A1B1 is sought.

In finding the sensor position, it is not assumed that the refer-
ence track is the true track of the target. Hence, the range ambigu-
ity is still present in the problem. However, once given a true range
like the distance between two sensors or target track length, one
can determine the absolute positions of the sensors with respect
to some chosen reference sensor whose absolute position could be
determined by some other means (e.g., GPS.) Another interesting
feature is that the reference sensor angles can be determined by the
DOA estimates alone without any range information.

In Fig. 6, the result of our approach is illustrated. A sampling
period of T = 0.5s is used and 200 DOA samples are taken from
a target moving on a straight line corresponding to a total observa-
tion time of 100s. The target track is disturbed to prevent perfect
linearity and hence better accounts for realistic situations. The cal-
ibration is satisfactory considering the fact that only 200 samples
are used. It should be noted that increasing the number of samples
and the sampling frequency at the same time results in better esti-
mates of the sensor positions if more accuracy is required. If more
calibrating targets are available, averaging the resulting position
estimates will increase the accuracy.
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Figure 6: An array consisting of 5 sensors is calibrated using the
extended Kalman filter. Orientations of the sensors are also shown
along with the actual positions. Then, our estimates of the sensor
position and orientation estimates are superposed.

4. EXTENSION TO THE 3D CASE

Filter equations for the 3D case are more complex than the equa-
tions for the 2D case but they follow the same structure. It can be
shown that introducing the elevation angle also introduces a bias
in the last state variable, which is the inverse range [1]. This bias
may be removed, but the array calibration can be still achieved
even in the presence of this bias2. It should be noted that the filter
still preserves its scaling property and hence the rotation of sim-
ilar triangles used in 2D can again be exploited for 3D. Figure 7
illustrates the track generated by the extended Kalman filter using
the modified spherical coordinates with bias removal. The target
is moving with vx = −25m/s , vy = 25m/s , vz = 25m/s and
N = 300 samples are used in obtaining the graph, corresponding
to 90s of observation time.

2Biased track and the original target track also form a similar triangle.
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Figure 7: Tracking example in 3D.

5. CONCLUSIONS

The extended Kalman filter is used to train a sensor array with
unknown position and orientations assuming one target with con-
stant velocity. When the constant velocity assumption is imposed
on the target, properties of the extended Kalman filter can be ex-
ploited to find the scaled relative sensor positions and relative ori-
entations given the DOA measurements alone. In order to get rid
of the range and rotational ambiguities of the tracking problem,
one absolute range measure and a reference orientation must be
given. This approach is simple and efficient as well as accurate as
demonstrated by the simulations.
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