EE-602

STATISTICAL SIGNAL PROCESSING

TERM PAPER REPORT ON

CONSTRAINED AND NON-LINEAR LEAST SQUARES

SUBMITTED BY:

GUIDED BY:

PRATEEK TAMRAKAR (Y8104048)

DR. RAJESH M. HEGDE

SAURABH AGRAWAL (Y8104058)

DEPARTMENT OF ELECTRICAL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY, KANPUR

CONSTRAINED LEAST SQUARES

At times we come across the LS problems where unknown parameters must be constrained. Assuming parameter θ is subject to r<p independent constraints, then we summarize the constraints as

$$A\theta = b$$

Where A is a r x p matrix and b is a known r x 1 vector.

For instance, let p=2 and one parameter is negative of other, then the constraint would be

$$\theta_1 + \theta_2 = 0$$

Then we have

 $A=\begin{bmatrix} 1 & 1 \end{bmatrix}$ and b=0

The condition for the constraints to be independent is that the matrix A should be full rank (equal to r). There are only p-r independent parameters.

To find the Least Squares Estimator (LSE) subject to linear constraints, we use Lagrangian multiplier.

We determine θ_{C} (c denotes the constrained LSE) by minimizing the Lagrangian

$$J_{C} = (x-H\theta)^{T}(x-H\theta) + \lambda^{T} (A\theta-b)$$

Where λ is a r x 1 vector of Lagrangian multipliers.

Expanding above expression, we have

 $J_{C} = x^{T}x - 2\theta^{T}H^{T}x + \theta^{T}H^{T}H\theta + \lambda^{T}A\theta - \lambda^{T}b$

Taking the gradient w.r.t. θ , we have

$$\frac{\mathrm{d}J}{\mathrm{d}\theta} c = -2H^{\mathrm{T}}x + 2H^{\mathrm{T}}H\theta + A^{\mathrm{T}}\lambda$$

Setting it to zero, we have

$$\hat{\theta}_{C} = (H^{T}H)^{-1}H^{T}x^{-}\frac{1}{2}(H^{T}H)^{-1}A^{T}\lambda$$
$$= \hat{\theta} - \frac{1}{2}(H^{T}H) - 1A^{T}\lambda \qquad (i)$$

Where $\,\widehat{\theta}\,$ is the unconstrained LSE.

Now, to find $\boldsymbol{\lambda},$ we impose the constrain

 $A\theta = b$

So that

$$A\theta_{C} = A\widehat{\theta} - \frac{1}{2}A(H^{T}H)^{-}1A^{T}\lambda = b$$

Hence

$$\frac{1}{2}\lambda = [A(H^{T}H)^{-1}A^{T}]^{-1}(A\theta-b)$$

Substituting in equation (i) gives

$$\hat{\theta}_{C} = \hat{\theta} \cdot (H^{T}H)^{-1}A^{T}[A(H^{T}H)^{-1}A^{T}]^{-1}(A\hat{\theta} \cdot b)$$
(ii)

Where

$$\hat{\theta} = (\mathbf{H}^{\mathrm{T}}\mathbf{H})^{-1}\mathbf{H}^{\mathrm{T}}\mathbf{x}$$

EXAMPLE OF CONSTRAINED LEAST SQUARES

If the signal model is

$$\mathbf{s}[\mathbf{n}] = \begin{cases} \theta 1\\ \theta 2\\ 0 \end{cases}$$

and we observe {x[0],x[1],x[2]}, then the observation matrix is

$$\mathbf{H} = \begin{bmatrix} 1 & 0\\ 0 & 1\\ 0 & 0 \end{bmatrix}$$

The signal vector is

$$\mathbf{s} = \mathbf{H}\boldsymbol{\theta} = \begin{bmatrix} \boldsymbol{\theta} 1 \\ \boldsymbol{\theta} 2 \\ \mathbf{0} \end{bmatrix}$$

The unconstrained LSE is

$$\hat{\theta} = (\mathbf{H}^{\mathrm{T}}\mathbf{H})^{-1}\mathbf{H}^{\mathrm{T}}\mathbf{x} = \begin{bmatrix} \mathbf{x}[\mathbf{0}]\\ \mathbf{x}[\mathbf{1}] \end{bmatrix}$$

and the signal estimate is

$$\hat{\mathbf{s}} = \mathbf{H}\hat{\boldsymbol{\theta}} = \begin{bmatrix} \mathbf{x}[0] \\ \mathbf{x}[1] \\ \mathbf{0} \end{bmatrix}$$

Now assume that we know a priori that

$$\theta_1 = \theta_2$$

thus we have

$$[1 -1] \theta = 0$$

so that

$$A = \begin{bmatrix} 1 & -1 \end{bmatrix}$$
 and $b = 0$

Now noting that

 $\mathbf{H}^{\mathrm{T}}\mathbf{H} = \mathbf{I}$

so from equation (ii) we have

$$\hat{\theta}_{C} = \hat{\theta} - A^{T} [AA^{T}]^{-1} A$$
$$= [I - A^{T} [AA^{T}]^{-1} A] \hat{\theta}$$

on solving the above expression, we have

$$\hat{\theta}_{C} = \begin{bmatrix} \frac{1}{2} (x[0] + x[1]) \\ \frac{1}{2} (x[0] + x[1]) \end{bmatrix}$$

and the constrained signal becomes

$$\hat{s}_{c} = H\hat{\theta}_{c} = \begin{bmatrix} \frac{1}{2}(x[0] + x[1]) \\ \frac{1}{2}(x[0] + x[1]) \\ 0 \end{bmatrix}$$

NONLINEAR LEAST SQUARES

Least Square Procedure that estimates model parameters $\boldsymbol{\theta}$ by minimizing the Least Square Error Criterion:

$$J = (x-s(\theta))^{T} (x-s(\theta))$$

 $s(\theta) = Signal \mod for \mathbf{x}$, with its dependence on θ .

In the Linear Least Square problem the signal takes on special form $s(\theta) = H\theta$, which leads to the simple linear Least Square Estimator. In general, $s(\theta)$ can't be expressed in this manner but is an N-dimensional nonlinear function of θ . In such a case the minimization of J becomes much more difficult, if not impossible. This type of nonlinear Least Square problem is often termed a *nonlinear regression problem*.

Methods that can reduce complexity of Problem for determining nonlinear LSEs:

- 1. Transformation of parameters
- 2. Separability of parameters

1. <u>Transformation of parameters</u>

One-to-one transformation of $\boldsymbol{\theta}$ that produces a linear signal model in the new space

$$\alpha = g(\theta)$$

g: p-dimensional function of θ whose inverse exists. If a **g** can be found so that

 $s(\theta) = s(g^{-1}(\alpha)) = H\alpha$

then the signal model will be linear in α .

Thus the **nonlinear** LSE of $\boldsymbol{\theta}$ by

$$\widehat{\theta} = g^{-1}(\widehat{\alpha})$$

where: $\widehat{\alpha} = (H^T H)^{-1} H^T x$

Approach: minimization can be carried out in any transformed space that is obtained by a one-to-one mapping & then converted back to original space.

2. <u>Separability of parameters</u>

A separable signal model has the form

$$s = H(\alpha)\beta$$
$$\theta = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} (p-q) \times 1 \\ q \times 1 \end{bmatrix}$$

 $H(\alpha)$ is an $N \times q$ matrix dependent on α .

This model is linear in β but nonlinear in α . The LS Error may be minimized with respect to β and thus reduced to a function of α only.

Since

$$J(\alpha,\beta) = (x - H(\alpha)\beta)^{T} (x - H(\alpha)\beta)$$

the $\boldsymbol{\beta}$ that minimizes J for a given a is

 $\hat{\boldsymbol{\beta}} = (\boldsymbol{H}^{\mathrm{T}}(\alpha)\boldsymbol{H}(\alpha))^{-1} \boldsymbol{H}^{\mathrm{T}}(\alpha)\boldsymbol{x}$

And the resulting LS error is

 $J(\alpha, \hat{\beta}) = x^{T} [I - H(\alpha) (H^{T}(\alpha) H(\alpha))^{-1} H(\alpha)^{T}] x$

The Problem now reduces to a maximization of

$$x^{T} H(\alpha)(H^{T}(\alpha)H(\alpha))^{-1} H(\alpha)^{T} x$$

over α . If, for instance, q=p-1, so that α is a scalar, then a grid can possibly be used. This should be contrasted with the original minimization of a *p*-dimensional function.

Example: Sinusoidal Parameter Estimation

For a sinusoidal signal model

$$s[n] = A\cos(2\pi f_o n + \phi)$$

It is desired to estimate the amplitude A, where A > 0, phase ϕ .

The frequency f_o is assumed known.

LSE is obtained by minimizing

$$J = \sum_{n=0}^{N-1} (x[n] - A\cos(2\pi f_o n + \phi))^2$$

Over A & $\boldsymbol{\varphi},$ a nonlinear LS problem. However, because

 $A\cos(2\pi f_0 n + \phi) = A\cos(\phi)\cos(2\pi f_0 n) - A\sin(\phi)\sin(2\pi f_0 n)$

If we let $\alpha_1 = A \cos(\phi)$

 $\alpha_2 = -A \sin(\phi)$

Then the signal model becomes

$$s[n] = \alpha_1 \cos(2\pi f_0 n) + \alpha_2 \sin(2\pi f_0 n)$$

In the Matrix form this is $s = H\alpha$

Where,

$$H = \begin{bmatrix} 1 & 0\\ \cos(2\pi f_0 n) & \sin(2\pi f_0 n)\\ \vdots & \vdots\\ \cos(2\pi f_0 (N-1)) & \sin(2\pi f_0 (N-1)) \end{bmatrix}$$

which is now linear in the terms of new parameters .

The LSE of $\alpha\,$ is

$$\hat{\alpha} = (\mathbf{H}^{\mathrm{T}}\mathbf{H})^{-1}\mathbf{H}^{\mathrm{T}}\mathbf{x}$$

and to find $\hat{\theta}$ we must find the inverse transformation g⁻¹(α).

This is

$$A = (\alpha_1^2 + \alpha_2^2)^{1/2}$$
$$\phi = \tan^{-1} \left(\frac{\mathbb{P} - \alpha_2^2}{\alpha_1} \right)$$

So that the nonlinear LSE for this problem is given by

$$\widehat{\theta} = \begin{bmatrix} \widehat{A} \\ \widehat{\phi} \end{bmatrix}$$
$$\widehat{\theta} = \begin{bmatrix} \sqrt{\alpha_1^2 + \alpha_2^2} \\ \tan^{-1} \begin{bmatrix} \frac{2}{\alpha_1} \\ \frac{2}{\alpha_1} \end{bmatrix}$$

Where: $\widehat{\alpha} = (H^T H)^{-1} H^T x$