A Spectral-Flatness Measure for Studying the Autoawoelation
Method of Linear Prediction of Speech Analysis

Authors: Augustine H. Gray and John D. Markel

A Report byKaviraj Singh, Komaljit Meena, Vaibhav Vashisht

Definition: Spectral Flatness is a measure of the noisingassadality of a spectrum. For tonal
signals it is close to 0 and for noisy signalsitlose to 1. Consider the two images below:

Figure 1(a) illustrates the spectrum of a tonahaigi.e., a signal that contains sinusoids of s
frequencies. Such a spectrum contains discretespmaing to which théflatness” is 0. Figure 1(b)
shows the spectrum of the same signal with noidedtb it. The noise that is visible in the spettru
makes it more flat than in the previous case aadSrectral Flatness Measure is non-zero.
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Figure 1: Comparison of the Flatness of two spectra.

To define a Spectral Flathess Measure for any givespectrum (here, a
speech spectrum):

The normalized log spectrum of time sequence isrghy

V = V() =log {| Elexp (j8)7][*/r.(0)}.

Wherer(0) denotes energy of time sequence, given by
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Given the normalized log spectrum of the speechasiget us define two functions &f(©) and
compare which one of the two is more suited to BEBl (Spectral Flathess Measure).

A. Equation(1)
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B.
Plotting both A and B w.r.v/(6) on a graph, we get the following shapes
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Figure 2: y andu versusV(6)

Thus, the two measures defined have the follownogerties:
A: Weighs -ve and +ve excursions of the normalizgdsjmectrum equally

B: Weighs the +ve excursions more heavily and thexeeirsions less heavily

Now, as the peaks of speech log spectra (moregefgcithe formants) play a more important role
than do the valleys in the perception of speechpitld be preferable to use an integrand that is no
symmetric, but more heavily weighs the positiveuggons ofV than the negative excursions. Thus,

u has the desired properties, and will be a better nasure for our purposes
Developing the SFM:As V(f) represents the normalized log spectrum of theasigine average &’

will be unity.
Thus, our initial representation in Equation (2yrba simplified as:

. i ae
w(E) = —f Ve 5.
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Here, -u (E) with a factor of 2 represents the zeroth quefremfcthe cepstrum and exp [u-(E) ]
represents the ratio of the geometric to arithmetgans of the spectrum. Let this be cale(E),

which is our Spectral Flatness Measure.



Thus, our Spectral Flatness Measur
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E(L) = exp [—u(E) ] = exp [[ 4O 2—]
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With this normalization the spect-flatness measuré, (E) will lie between 0 and 1, and equalor a
perfectly flat spectrum.

Spectral FlatnessTransformations

Consider an alrero inverse filte Ay (2)

M
AM(Z) =1+ Z aMkz"“

k=1

The output will be represented in the form of thyedt in the following mann:

X aut) = 14 3 awet | —E(z) = X(z) Ay, (2)

k=1

Figure 3: An All-Zero Model

Residue calculus can be applied to show
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Using Equation (3), along with the expression af#diforE (z),it can be shown th
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Using the previous result, and the definition oé tmeasure of spectral flatness, we obtain
transformation:

Z(E) = Z(X) 14(0) / r(0)  ------- Equation (4)

If the input to the filter AM(2) is fixed, the onlyortion of Equation (4) that can produce a chang
the output spectral flatness is the tere (0), the energy of that outpu. (E) will thus bea maximum
whenr, (0) is a minimum. Since minimizinre (0) is one of the many criteria used to lead to
autocorrelation methb of linear prediction [, maximizing the spectrdlatness measure of tl
inverse filter output leads to precisely the saesults.

Given that the aim is decomposition of log spectafrX (z)in terms of both the log spectraE(z)
and | Ay (z), we can use the result obtained in Equation (4htovsthat

10 ]Ogm E(X) = 10 10g1o E(E) —+ 10 lOgm E(l/AM)



[ll.  Spectral-Flatness of Two Driving Function Models

A. Unvoiced Driving Function Model
One possible model in the case of unvoiced soundghe driving function is uncorrelated
Gaussian noise. The log spectrum of such a sigillehave an expected value that is less than
the logarithm of the expected value of the spectbynan amount y, whengis Euler's constant
0.5772.Numerically evaluated flatness measure lvaille an expected value of roughly exy(
or -2.5 dB.

B. Voiced Driving Function Model
Driving function is the set of L + 1 equally spacainples

e = 0 for k 5 Ll 4 P,l 4 2P, -+l + LP

where,y is the first sample in the time window,. r is the last, and P represents a pitch period.
The spectral flatness will lie between (Efj2L) ! and one. If there is only one such saniple
the time window, the resulting spectral-flathessasuge is 1, oD dB. If all samples have the
same size, then Spectral-Flatness measure equals-11)

We draw the Spectogram of the utteraf\&l the rest follow soon.”
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Figure 4. Spectogram of the utterance “Will the rest follsaon

TABLE L
Sampling  Number of
Frequency Samples Window Type of
Fxample F. N Length Window
Fig. 5(a) 6.5 kHz 128 19.69 ms rc-:‘!nnp':ltlar
Fig. 5(b) 6.5 kHz 128 19.69 ms Hamming
Fig. 5(e) 13.0 kHz= 256 19.69 ms Hamming
Fig. 5(d) .5 kH= 256 20.33 m= Hamming
Fig. 6{(a) 6.5 kH= 128 19,69 ms rectangular
Fig. 6(b) 6.5 kHz 128 19 .69 ms Hamming

Table 1: Description of the analysis parameters in Figbrasd Figure 6
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Figure 5: The lower curve represents the spectral-flatnesssores at the input to the inverse filter,
10logieZ(X), and the upper curve represents the spectral-fisimesasures at the output®log, Z(E). Each
data window has N points thus, time windows hawgtle N/Fs = NAt

C. Conclusions from the figure

e The spectral-flatness measure of the inverse bitgput varies far less than input’s.

< During unvoiced portions, the theoretical modeldgted an average level of -2.5 dB which
compares well with the experimental results.

+ During voiced portions, the theoretical model peeeti a wide range of values, [(E/(RL)!,
1] which compares well with the experimental result

* In figure 5 (d) the number of pitch periods perlgsia window is twice hence, the spectral-
flatness measure is decreased.

« In figures 5(a) and 5(b) the spectral-flatness meass decreased during voiced portions by
the use of a Hamming window.

* In figures 5(b) and 5(c) increasing the samplinge n@educes spectral-flatness measure of
voiced sounds.



IV. Spectral Flatness and Ill-Conditioning

To solve for the coefficients of the inverse filtene must solve a set bf simultaneous algebraic
equations. The matrix of coefficients of these ¢igna is theM by autocorrelation matriR whose
elements rik fori =1, 2, ..., Mand k =1, 2, .M,are given by the autocorrelation values of the
inverse filter input sequence, rik = rx (1 —k).

There are numerous “measures” of ill-conditionifignatrices. The most common of these are the N
and M condition numbers of Turing and the P andhddion numbers of Todd.

In the given paper, an effort has been made todotte a more elementary measure of ill-
conditioning, which more closely corresponds withberimental results. This measure will be defined
as a number which lies between zero and one, takinipe value of one for a perfectly conditioned
problem, when R is the identity matrix, and zenod®ingular problem, when R is a singular matrix.

One elementary approach is to utilize a normalisterminant of the matrix in question:
M=
| R|/vM(0) = | R/ = JI (an/ao)

m=1U
A modification of the above will be our measurallbtonditioning (Mth root of the above):

M1

p.” — ,R [t'l JI‘,"“H - L- H { f-‘lm_")ui!}j”n!-

=)

pmrepresents the geometric mean of the decreasingse€(a, / ag). It will decrease from 1, fokM =
1, and approach the limiting value

Lim PM = P = Qlog = E{ A-'J

-

Thus, the spectral-flatness measure is thus btatver bound and a limiting value pf, and as such
can itself be considered a measure of ill-conditignFrom this, a number of conclusions may be
drawn:

1. It takes more accuracy to analyze voiced soundsuhsoiced.

2. The use of a Hamming or Hanning window increasesathount of computational accuracy
needed.

3. Increasing the sampling rate increases the amdwanoputational accuracy needed.

4. Proper pre-emphasis or pre-whitening can decrdasearmount of computational accuracy
needed.

V. Pre-emphasis of the Speech Data

The probability of numerically caused instabilitiesthe filter 1/Ay (z) is greatly reduced by pre-
emphasis of the speech data. Pre-emphasis is mastlyl for ill-conditioned problem and is of
importance to inverse filter analysis techniques.

One approach to pre-emphasis is to utilize a lodeotinverse filter and maximize the spectral
flatness of its output. Proposed is a simple brder pre-emphasis filter to do the purpose.



A. First Order Pre-emphasis
The pre-emphasis filter is of the form pz*
Wherep = r5(1) / 15(0), r¢(n) is autocorrelation sequence for the input sequetate{s,}.

If {f,} is the time sequence of the pre-emphasis filtgpudtthen= (F) = = (S)rs(0)/ 11 (0), and a
direct evaluation gives (0) as: r;(0) = (1 +1£) r0) — 2.ur(l) hence,

EF)macE(S) /(1 - l})

B. Experimental results

< 5= X a
- e———
w ] 37 |
"\.,-»Ar’

""._: 4 ..rl S _"--",‘_‘ 1 \F:ﬁf; W --Lr'“-,. 5 A f
4 ||-' J i 1 i I B (]
HIJ} | ’ J.ﬂ rr L\ 1M = bﬁl,l | ,fﬁ‘-l {

| WY | Ao

e ‘ J} H’ =

o oaee
Py
'

-\..|',"
II'-
I'u

(b
Figure 6: Spectral Flatness with Pre-emphasis: (a) RectangMindow, (b) Hamming Window.

C. Conclusions

a. Comparing with Fig. 5(a), one can see that the tirgpmectral flatness is greater, while the
output spectral flatness is slightly less. Thistasbe expected, for the preemphasis filter
increases the spectral flatness at the input oftrerse filter.

b.  The combination prremphasis filter and inverseeffilis eighth order in Fig. 6(a.), and thus
cannot have an output spectral flatness which igoasl as that of the optimum eighth-order
inverse filter shown in Fig.5 (a)

C. The distance between the lower and upper clogey(am/ao) indicates that the ill conditioning
of the solution process is considerably reduced

d. A comparison of Fig. 6 (a) and (b) shows that thecsral flatness at the output of the inverse
filters is essentially unchanged in its overall &ghur.

VI. Conclusions from the paper
* A spectral-flatness measure has been developecenmuahvalue from O to 1.
» Perfectly flat or constant spectrum has a flattoé€sdB.
» The lower the spectral flatness the more ill-cdoditd the problem.
* Pre-emphasis of the speech signal by means of deamelinear predictor was shown to
greatly enhance the spectral flatness of the signal
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