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Definition:  Spectral Flatness is a measure of the noisiness/ sinusoidality of a spectrum. For tonal 
signals it is close to 0 and for noisy signals it is close to 1. Consider the two images below: 

Figure 1(a) illustrates the spectrum of a tonal signal, i.e., a signal that contains sinusoids of various 
frequencies. Such a spectrum contains discrete peaks owing to which the “flatness” is 0. Figure 1(b) 
shows the spectrum of the same signal with noise added to it. The noise that is visible in the spectrum 
makes it more flat than in the previous case and the Spectral Flatness Measure is non-zero. 

       

 

Figure 1: Comparison of the Flatness of two spectra. 

I. To define a Spectral Flatness Measure for any given spectrum (here, a 
speech spectrum): 

The normalized log spectrum of time sequence is given by  

 

Where re(0) denotes energy of time sequence, given by  

 

Given the normalized log spectrum of the speech signal, let us define two functions of V(Ө) and 
compare which one of the two is more suited to be a SFM (Spectral Flatness Measure). 

A. ----------------------------------------- Equation (1) 

(a) Spectral Flatness = 0 (b) Spectral Flatness = 0.51 



B. ----------------------- Equation (2) 
 

Plotting both A and B w.r.t. V(Ө) on a graph, we get the following shapes: 

 

Figure 2: η and µ versus V(Ө) 

Thus, the two measures defined have the following properties: 

A:  Weighs -ve and +ve excursions of the normalized log spectrum equally 

B: Weighs the +ve excursions more heavily and the -ve excursions less heavily  

Now, as the peaks of speech log spectra (more precisely, the formants) play a more important role 
than do the valleys in the perception of speech, it would be preferable to use an integrand that is not 
symmetric, but more heavily weighs the positive excursions of V than the negative excursions. Thus, 
µ has the desired properties, and will be a better measure for our purposes. 

Developing the SFM: As V(θ) represents the normalized log spectrum of the signal, the average of eV 
will be unity. 

Thus, our initial representation in Equation (2) may be simplified as:  

 

Here, - µ (E) with a factor of 2 represents the zeroth quefrency of the cepstrum and exp [ - µ (E) ] 
represents the ratio of the geometric to arithmetic means of the spectrum. Let this be called Ƶ (E), 
which is our Spectral Flatness Measure. 

 



Thus, our Spectral Flatness Measure is:

With this normalization the spectral
perfectly flat spectrum. 

 

II.  Spectral Flatness Transformations
Consider an all-zero inverse filter 

  

The output will be represented in the form of the input in the following manner

Residue calculus can be applied to show that 

Using Equation (3), along with the expression obtained for 

Using the previous result, and the definition of the measure of spectral flatness, we obtain the 
transformation: 

Ƶ(E) = Ƶ(X) rx(0) / re(0)   -------  

If the input to the filter AM(z) is fixed, the only portion of Equation (4) that can produce a change in 
the output spectral flatness is the term 
when re (0) is a minimum. Since minimizing 
autocorrelation method of linear prediction [1
inverse filter output leads to precisely the same 

Given that the aim is decomposition of log spectrum of 
and l /AM (z), we can use the result obtained in Equation (4) to show that 
 

Thus, our Spectral Flatness Measure is: 

 

With this normalization the spectral-flatness measure, Ƶ (E) will lie between 0 and 1, and equal 1 f

Transformations  
zero inverse filter AM (z) 

 

The output will be represented in the form of the input in the following manner: 

Figure 3: An All-Zero Model 

Residue calculus can be applied to show that  

---------------------------------------------

Using Equation (3), along with the expression obtained for E (z), it can be shown that

Using the previous result, and the definition of the measure of spectral flatness, we obtain the 

  Equation (4) 

If the input to the filter AM(z) is fixed, the only portion of Equation (4) that can produce a change in 
the output spectral flatness is the term re (0), the energy of that output. Ƶ (E) will thus be 

is a minimum. Since minimizing re (0) is one of the many criteria used to lead to the 
d of linear prediction [1], maximizing the spectral-flatness measure of the 

inverse filter output leads to precisely the same results. 

Given that the aim is decomposition of log spectrum of X (z) in terms of both the log spectra of 
we can use the result obtained in Equation (4) to show that  

 

will lie between 0 and 1, and equal 1 for a 

 

--------------------------------------------- Equation (3) 

it can be shown that 

 

Using the previous result, and the definition of the measure of spectral flatness, we obtain the 

If the input to the filter AM(z) is fixed, the only portion of Equation (4) that can produce a change in 
) will thus be a maximum 

is one of the many criteria used to lead to the 
flatness measure of the 

in terms of both the log spectra of E(z) 



III.  Spectral-Flatness of Two Driving Function Models 
 

A. Unvoiced Driving Function Model 
One possible model in the case of unvoiced sounds for the driving function is uncorrelated 
Gaussian noise. The log spectrum of such a signal will have an expected value that is less than 
the logarithm of the expected value of the spectrum by an amount y, where y is Euler's constant 
0.5772.Numerically evaluated flatness measure will have an expected value of roughly exp(- y) 
or -2.5 dB. 

 

B. Voiced Driving Function Model 

Driving function is the set of L + 1 equally spaced samples 

 

where, yl is the first sample in the time window, yZ + lP is the last, and P represents a pitch period.  
The spectral flatness will lie between (L!) 2/(2L) !  and one. If there is only one such sample in 
the time window, the resulting spectral-flatness measure is 1, or 0 dB. If all samples have the 
same size, then Spectral-Flatness measure equals l / (L + 1) 

We draw the Spectogram of the utterance “Will the rest follow soon.”  

 

Figure 4: Spectogram of the utterance “Will the rest follow soon” 
 

 
Table 1: Description of the analysis parameters in Figures 5 and Figure 6 



 

 

Figure 5: The lower curve represents the spectral-flatness measures at the input to the inverse filter, 
10log10Ƶ(X), and the upper curve represents the spectral-flatness measures at the outputs, 10log10 Ƶ(E). Each 

data window has N points thus, time windows have length N/FS = N∆t 

 

C. Conclusions from the figure 
 

• The spectral-flatness measure of the inverse filter output varies far less than input’s. 

• During unvoiced portions, the theoretical model predicted an average level of -2.5 dB which 
compares well with the experimental results. 

• During voiced portions, the theoretical model predicted a wide range of values, [(L!)2/(2L)!, 
1] which compares well with the experimental results. 

• In figure 5 (d) the number of pitch periods per analysis window is twice hence, the spectral-
flatness measure is decreased. 

• In figures 5(a) and 5(b) the spectral-flatness measure is decreased during voiced portions by 
the use of a Hamming window. 

• In figures 5(b) and 5(c) increasing the sampling rate reduces spectral-flatness measure of 
voiced sounds.  

 

 



IV.  Spectral Flatness and Ill-Conditioning 
 

To solve for the coefficients of the inverse filter, one must solve a set of M simultaneous algebraic 
equations. The matrix of coefficients of these equations is the M by autocorrelation matrix R whose 
elements rik for i = 1, 2, ..., M and k = 1, 2, … , M are given by the autocorrelation values of the 
inverse filter input sequence, rik = rx ( I – k ). 
 
There are numerous “measures” of ill-conditioning of matrices. The most common of these are the N 
and M condition numbers of Turing and the P and H condition numbers of Todd. 
 
In the given paper, an effort has been made to introduce a more elementary measure of ill-
conditioning, which more closely corresponds with experimental results. This measure will be defined 
as a number which lies between zero and one, taking on the value of one for a perfectly conditioned 
problem, when R is the identity matrix, and zero for a singular problem, when R is a singular matrix. 
 
One elementary approach is to utilize a normalized determinant of the matrix in question: 

 
 
A modification of the above will be our measure of ill-conditioning (Mth root of the above): 
 

 
 
ρm represents the geometric mean of the decreasing sequence (αm / α0). It will decrease from 1, for M = 
1, and approach the limiting value 

 
 
Thus, the spectral-flatness measure is thus both a lower bound and a limiting value of ρm and as such 
can itself be considered a measure of ill-conditioning. From this, a number of conclusions may be 
drawn: 
 

1. It takes more accuracy to analyze voiced sounds than unvoiced. 
2. The use of a Hamming or Hanning window increases the amount of computational accuracy 

needed. 
3. Increasing the sampling rate increases the amount of computational accuracy needed. 
4. Proper pre-emphasis or pre-whitening can decrease the amount of computational accuracy 

needed. 
 

V. Pre-emphasis of the Speech Data 
 

The probability of numerically caused instabilities in the filter 1/AM (z) is greatly reduced by pre-
emphasis of the speech data. Pre-emphasis is mostly useful for ill-conditioned problem and is of 
importance to inverse filter analysis techniques. 
 
One approach to pre-emphasis is to utilize a low order inverse filter and maximize the spectral 
flatness of its output. Proposed is a simple first order pre-emphasis filter to do the purpose. 
 



A. First Order Pre-emphasis 
 
The pre-emphasis filter is of the form 1 - µz-1 

 

Where µ = rs (1) / rs (0),  rs(n) is autocorrelation sequence for the input sequence  data {sn}. 

If {f n} is the time sequence of the pre-emphasis filter output then Ξ (F) = Ξ (S) rs (0)/ rf (0), and a 
direct evaluation gives r f  (0) as:  r f (0) = (1 +µ2) rs(0) – 2.µ.rs (l)  hence, 

                                             Ξ (F)max= Ξ (S) / (1 - µ2) 

B. Experimental results 

 
 

Figure 6: Spectral Flatness with Pre-emphasis: (a) Rectangular Window, (b) Hamming Window. 

C. Conclusions 
 

a. Comparing with Fig. 5(a), one can see that the input spectral flatness is greater, while the 
output spectral flatness is slightly less. This is to be expected, for the preemphasis filter 
increases the spectral flatness at the input of the inverse filter. 

b. The combination prremphasis filter and inverse filter is eighth order in Fig. 6(a.), and thus 
cannot have an output spectral flatness which is as good as that of the optimum eighth-order 
inverse filter shown in Fig.5 (a) 

c. The distance between the lower and upper curve, log10(αM/α0) indicates that the ill conditioning 
of the solution process is considerably reduced 

d. A comparison of Fig. 6 (a) and (b) shows that the spectral flatness at the output of the inverse 
filters is essentially unchanged in its overall behaviour. 

 

VI.  Conclusions from the paper 
• A spectral-flatness measure has been developed: numerical value from 0 to 1. 
• Perfectly flat or constant spectrum has a flatness of 0 dB. 
• The lower the spectral flatness the more ill-conditioned the problem. 
• Pre-emphasis of the speech signal by means of a one-term linear predictor was shown to 

greatly enhance the spectral flatness of the signal. 
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